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Summary 

Results are presented for the percutaneous absorption of 3 different esters of 
nicotinic acid from circular patches; the values of the diffusion coefficients and 
triggering concentrations for visible erythema are in good agreement with previous 
work. For methyl nicotinate the radial spread of the erythema has been followed as a 
function of time; the results are shown to fit a radial diffusion equation. However, 
the value of the diffusion coefficient is found to be a thousand times larger than the 
expected value for molecular diffusion. A model is presented in which the radial 
transport is caused by uptake in the capillaries. Reasonable values are found for the 
rate constants describing uptake and for the geometry of the capillaries. This 
geometry is shown to be close to the optimum for efficient transport to and from the 
dermis. 

lntroductian 

In this paper we report the results of experiments in which we have studied the 
percutaneous absorption of 3 different esters of nicotinic acid. These compounds 
produce a noticeable erythema. after penetrating the epidermis. We have studied the 
radial spread of the erythema produced by methyl nicotinate. From analysis of the 
rate of spread we can measure the rate of radial diffusion and of uptake by the 
capillary system. 

-- 
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Materials and Methods 

Experimental details have been given previously (Albery and Hadgraft, 1979b). 
The radial spread was measured at suitable time intervals by outlining the erythe- 
matous area on the subject’s arm with a felt-tip pen. At the end of the experiment, 
whal about 6 “contours” had been recorded, the arm was photographed in a fixed 
position with respect to the camera. The area on the photograph was measured by 
tracing each contour on to graph paper and counting the squares. The conversion of 
the photographic area to the area on the original skin was achieved by photograph- 
ing graph paper in position on the arm. 

Theory 

Previous work (Albery and Hadgraft, 1979b) has shown that there is no signifi- 
cant barrier to transfer through the epidermis from kinetic barriers at phase 
boundaries. This simplifies the theoretical treatment of the transport through the 
epidermis. On the other hand, we now have to include the transport in the dermis. 
The model we use is illustrated in Fig. 1. Transport through the epidermis is 
described by Fick’s second 1a.w 

where c is the concentration of the diffusion species and D, is the diffusion 
coefficient in the epidermis. This equation holds for the area under the patch 
(r c rO). The boundary conditjons for Eqn. 1 are as follows. Firstly, on the surface of 
the skin, while the patch is applied, we have: 

atz=O andO<t<t,. c=c,,=Kc_, (2) 

where K is the partition coefficient between the patch and the epidermis and c, is 
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the concentration of ester in the patch. This boundary condition takes no account of 
depletion in the external phase. This can be important when vehicles of high 
viscosity are used (Albery and Hadgraft, 1979b) but can be ignored in the present 
work when only aqueous solutions are employed. Secondly, after the patch is 
removed we have 

at z=O and t > t,, (C~c/az)~=O 

Thirdly, at the insirie edge of the epidermis we have: 

atz=I c-0. 

This boundary condition assumes that removal by transport in the dermis and the 
circulatory system is rapid compared to transport, across the epidermis. This assump- 
tion is justified by experiment (Katz and Poulsen, 1971) and is also confirmed by 
analysis of our results (see below). 

Fourthly, at the start of the experiment we have for all values of z: 

at t =O, c=O. 

We express Eqn. 1 in dimensionless variables: 

(3) 

where u = c/c,,. r = tD,/.4?‘, and x = z/L 
The boundary conditions become: 

at ‘i’” 0 u= 0 
at x=1 u=o 

at x=0 

for f, > 7 > 0 u = 1 (4 

andforT>T,. (au/ax)” = 0 (5) 

In the dermis we assume that the distance, w, between the epidermis and the 
circulatory system is small enough for the concentration to be uniform. The 
processes occurring are therefore the supply of material from the patch the diffusive 
transport in the radial direction and the removal by the circulatory system. The 
differential equation is therefore: 

2 I ac 
$+-.- 

r ar 
+G-kc (6) 

where Du is the diffusion coefficient in the dermis, k is a f:rst-order rate constant 
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describing removal by the circulatory system, and G describes the supply of material 
from the patch of radius ro. 

For r < ro, 

G 
aD, ac 

i 1 

aDEco au =----_ -- =- _- 
W a2 z=.Lp ( 1 W-E ax 1 

andforr>r,,G=O 

The parameter a describes the fractional area of the interstitial channels through 
which the ester diffuses compared to the total area of the dermis (Albery and 
Hadgraft, 1979b). 
Expressing Eqn. 6 in dimensionless variables we obtain: 

th -= 
a; 

a’v+1av au 
Q- 

i ,, apz --- - j& ,- P h ii) 
where 

17) 

18) 

(9) 

(IOf 

‘f he boundary ~onditi~)ns are: 

The problem in solving Eqn. 3 with b~~und~~ry conditions (4) and (5) is the change in 
boundary condition when the patch is removed at t = t ,. In our previous treatment 
(AIbery and Hadgraft. 1979a) we used a double Laplace transforn~ to solve the 
equation. In this work we proceed by first solving Eyn, 3 for t < t, with the 
appropriate boundary ~ondit~o~t (4). We then find an equivalei~t boundary condition 
to Eqn. 5 in (au/ax):, rather than in uo. With thz use of the step function we can 
express the boundary ~~~ndition at x = 0 in terms of (&t/ax),, for all values of t and 
this means that we do not have to use the double Laplace t~ansforll~ technique. 

Hence solving Eqn. 3 with bo~llldary ~oI~dition (4) we obtain the Laplace 
transform: 
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The approximation is justified since 7, -+z 1 (Albery and Hadgraft, 1979b). We then 
invert the transform to obtain the combined boundary condition: 

(au/ax),= -f= -(1M)-“2[1 -U(7--,)I (11) 

where the step function, 

U(T-T,)=O for7<7, 

= 1 for I > 7, 

Now solving Eqn. 3 with boundary condition ( 11) we obtain for the supply of 
material to the dermis: 

(Xii/il~),=~ = -f.sech(s”‘2) (12) 

For experiments where the patch is removed and the time, t 2, for erythema to 
appear under the patch is measured we can ignore the Q terms in Eqn. 7. Hence the 
accumulation of the drug under the patch to reach the triggering level is given by 

vE = - [T2[(au/+&=, - Kv]dT’ (13) 

where vE = n,/JKc,cu and n E ( = cEw) is the number of moles per unit area 
required to trigger the erythema. 

From Eqns. 12 and 13 

vE = L;h,,f sech(s”’ 

We have used the convolution integral to invert the transform. However, because of 
the step function, U, in the expression for f in Eqn. 11 we replace the upper 
integration limit TV with q,; for T > 7l the integrand is zero. We have also used the 
followiug approximation, which holds for 7: -=z 1, 

L -’ 
sech(s’<‘*) --= , _, 2 exp( -s’,‘2) 

S+K - 
z 

4~“~ exp( - $7) 

s+lc a”2( 1 + 4K?) 

Consideration of the integrand in Eqn. 15 shows that for T < 1 the exponential term 
is always small but that it has its maximum value when X * 0. For larger values of X 
the exponential term reduces the size of the integrand so much that its contribution 
to the integral is negligible. Hence writing 

1 1 x --‘---_y--_i ----- 
4(4-X) 47, 47; .*. 
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we obtain 

4~:‘~ exp( -0.25/~,) 
v I-. = / 

71 exp( -X/4fidx 

?T(1+4lc$22) 0 JTT 

8~2’~ exp( - 0.25/5) erf( 7i/2/2T2) 
= 

P( 1 + 4K73 
(16) 

If we take 71 = 72. which corresponds to not removing the patch, then, since T -C 1, 
the erf term is unity. With K = 0, Eqn. 16 then reduces to our previous result 
(.solution IA, of Table 1, Albery and Hadgraft, 1979a) for this case: 

VI. = 87; “2~23’2 exp( -- 0.25/~, ) 

On the other hand if we take 1 Z+ ~22 z=- 7: then 

4-‘/’ exp( - 0.25,/~,) 7:/2 ‘2 
vt. = 

n(1 + 4K$) 
(17) 

This equation (with K = 0) is then the same result as we obtained previously 
(solutions P3 and PI of Table 3, Albery and Hadgraft 1979a). The advantage of the 
new treatment is that we do not have to make a:ly assumptions about the relative 
size of 71 and 72. In this work we have also taken into account the removal of the 
ester by the circulatory system (the term in ~7,‘). By contrast our previous work 
contained two effects not considered here-the kinetics of interfacial barriers and 
the depletion of the external phase. 

Next we turn to the radial diffusion. We take the Laplace transform of Eqn. 7 
and write 

(s+ ~)ii, = Q(~“v,,‘~p* + p-‘%,,/&I) 

where for p -z 1, (r < r,), n = 1 

S+K I 

while for p > 1. (r > r,,), n = 2 

and V = V2 

The solutions to Eqn. 18 are modified 
and Stegun, 1965bj. They are shown 

conditions 

c, = AI,, (qp) 

(18) 

Bessel functions of order zero (Abramowitz 
in Fig. 2. In order to fulfill the boundary 
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Fig. 2. Plot of the Bessel functions i, (p) and K, (p) together with a typical plot of Eqns. 19 and 20 with 
q = 2 plotted with y as defined in Eqn. 21. 

while Vz = BK, (qp) 

where q = (s f K/Q)“~ 

and A and B are constants. 

The constants are found by matching the values of 7, and @V&I) at p = 1. Hence 
we obtain for 

p’l, 
v= (--~wxh 

S+K 
[l - &hlP)Kltq)l 

whrle for 

p>l, V= qI,(q)K,(qPJ 

(s+K) 

(1% 

(20) 

Fig. 2 also shows a typical plot for q = 2 of the radial variation of V plotted as y 
where 

(s + K)ii 
y = (-aii/ax), 

(21) 
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For X > 2 (Abramowitz and Stegun, 1965b) 

Thus the concentration on the edge of the patch is one-half that at the centre, 
because material is being lost from the edge by radial diffusion. This factor of l/2 is 
a difference between these experiments, where the patch is removed and the time for 
erythema to develop is measured for the place where the patch was, and those 
experiments, where the patch remains in place and the time is measured for a halo of 
erythema to develop around the patch. In the latter case vE is given by Eqn. 16 with 
the factor of 8 replaced by 4. 

At greater radial distances, assuming T * << 1, which leads to s* >> 1 and qZ Z+ 1, 
we can replace the Bessel functions by their asymptotic forms for large argument 
(Abramowitz and Stegun, 1965b) and so obtain (for p > 1) 

q =p - l’zL~- ‘i2 * f (22) 

where g = 
exp [ -s’/’ - ( PF. - I)(s + d’*/Q] 

(s+K) 
(23) 

As described in Appendix 1, the transform is inverted by first inverting g and 
then using the convolution theorem. We obtain. 

F({.8f= (G2 - 1)3’4 
(1 ‘(<’ + q/2 

andO==(p,- 1),/Q” titp= l,O=tj 

(24) 

(25) 

and Eqn. 24 reduces to Eqn. 16 apart from the factor of 2 which describes the radial 
diffusion at the edge of the patch. 
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Results and Discussion 

Continuous apphation 
Experiments in which the ester was applied continuously were carried out for 

methyl, n-butyl and hexyl nicotinate. For these experiments the k-term is negligible 
(see below) and hence we can use the simple Eqn. 16 with the factor of 4 rather than 
8 to allow for radial depletion at the edge of the patch. Substituting for T, = -r2 and 
for vn from Eqn. 14 we find 

(26) 

where we have neglected the term in 1 + 4~7~‘; this approximation is justified below. 
The results of the experiments are plotted in Fig. 3 and are collected together in 

Table 1. Each of the points in Fig. 3 is the mean of at least 12 separate experiments. 
In calculating n,/a& we have estimated K from the measured values for the 
partition of the esters between water and isopropyl myritate KIPM. corrected by a 
factor of 6 (Albery and Hadgraft, 1979b): 

K = 6Kn,, (27) 

We assume that these esters diffuse by the intercellular rather than the transcellular 
route (Albery and Hadgraft, 1979b). That is the ester diffuses in the channels round 
the keratinized cells rather than through the cells. For this route we estimate (Albery 
and Hadgraft, 1979b) that 

Y/mm = 0.34, (28) 

and that the fractional area occupied by the channels, a, is given by 

a=7X lo-” (29) 

The results in Table 1 show that despite a 50-fold change in K the 3 esters give 
similar triggering concentrations. Furthermore, the diffusion coefficient of each ester 
in the interstitial channels parallels that for each ester in IPM; the epidermal 
diffusion coefficients are slower by a factor of 25. 

Our previous results (Albery and Hadgraft, 1979b) for methyl nicotinate gave 
D,, = 37 m’ - Ts- ‘, and nE = 40 pmol . cm-‘. Considering that these results were 
obtained with JH they are in good agreement with those in Table 1. Our results also 
agree with those of Stoughton et al. (1960) who found, using direct injection, that 

n Ii - 10 pmol~cm-2 and that nE was insensitive to the different alkyl groups. 

Pltlse experiments 
Experiments in which the patch is applied for a time t, and erythema subse- 

quently appears in the place where the patch was at time tz were carried out for 
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I 

6.0 
(t$ksl-’ 

Fig. 3. Plots of Eqn. 26 for experiments with continuous application of nicotinate esters: 0. methyl; bt:. 
n-butyl; 0, hexyl. 

methyl nicotinate with c, = 93.8 mM. The results are reported in Table 2: each 
result for t, is the mean of 12 separate experiments. Using the value of B,/l” 
determined from the continuous application experiments in Table 1 we calculate vk_ 

TABLE 1 

RESULTS FOR CONTINUOUS APPLICATION EXPERIMENTS 

Ester Methyl n-hutyl hexyl 

(D,;/P’)/ks-.I” 0.190 0.142 0.122 
Kh 20 230 4.70 
n b /al/p M ’ 36 x0 33 
D&n* Ts- ’ d 22 17 14 
D,,,/m* Gs.- ’ 0.51 0.43 0.40 
I02D,,‘D,r~ 4.3 3.8 2.9 
n E /pmol cm ’ ’ 9 I9 8 

’ Calculated from gradients of plots in Fig. 3. 
h From Eqn. 27. 
’ Calculated from inlercepts of plots in Fig. 3. 
’ Calculated using values in Eqn. 28 and 29. 
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TABLE 2 

RESULTS FOR PULSED EXPERIMENTS FOR METHYL NICOTINATE 

II/S (2/S 10’ VE 

20 244& 16 14.5 

30 212k 16 6.3 

60 2lSf 14 9.4 

120 209f IO 6.4 

180 218f 7 9.1 
mean-.---- 9.lfl.S 

from Eqn. 16. Reasonably constant values are found. From Eqn. 14 we find 

nt: = 41 pm01 . cm-* (30) 

This value is in reasonable agreement with that in Table 1. These results therefore 
confirm Eqn. 16 and the theoretical description of diffusion in the patch area. 

Radial di’Ju.sion experiments 

The area, A, of the erythematous region is measured as described in the experi- 
mental section. The area is assumed to be circular with an average radius, rE. The 
dimensionless parameter, pE, can then be calculated: 

where r, is the radius of the patch. In Table 3 and Figs. 4, 5 and 6 we report the 
experimental results. 

In Eqn. 24 we can use the values of vE and DE/l2 from the experiments with 
continuous application. There are then only the two unknowns which describe radial 
diffusion and removal by the circulatory system, respectively: 

Q = D#/D,r~ (31) 

Taking values of Q. the corresponding value of y can be calculated for each 
experimental point. A successful fit of the experimental data to Eqn. 24 is indicated 
by a constant value of y for the different experimental points in a series; typical 
results are shown in Fig. 7. 

For values of Q less than those given in Table 3 (Qmin), no fit can be found to 
Eqn. 24 for many of the experimental points and the remaining values of y are more 
dispersed. For values of Q greater than Qmin reasonable fits (as shown in Fig. 7) can 
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Fig. 4. Results for radial spread of erythema from methyl nicotinate for different wlucs of t, - Sews I. 

be found; there is no significant variation in the standard deviation for y for 
different values of Q. In Fig. 8 we show ihe values of log y plotted against log Q. Q 
varies with the size of the patch and in Fig. 8 we have also plotted the &MU for the 
experiments of Series I shifted by 0.41 log units, which corresponds to the radius 

TABLE 3 

RESULTS FOR RADIAL DIFFUSION EXPERIMENTS 
-------_ 

Series Fig. c,, /m M r. /cm v “*,I\ 
-- 

I 4 290 0.313 50 

II 5 93.8 O.SW 10 

111 6 1020 0.500 10 
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Fig. 5. Results for radial spread of erythema from methyl nicotinate for different values of t, - Series II. 

t 

a 1 2 3 

Fig- 6. RCSJI~S for radial spread of erythcma frarn methyl nicotinate for different values of t, - Series 
111. 
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/ J 
0 2 4 P 6 

Fig. 7. Typical analysis of the Series I results using, in this case, Q = 50 and Eqn. 24. The values of t,/s 
are as follows: l . 30; 0, 60; X 300; Cl, 600; v, 1200. The value of log y is I .24 f 0.05. 

ratio squared (0.50/0.31)2. It is satisfactory that when this is done the values of log y 
as a function of log Q from Series I are in good agreement with those from Series II 
and III. The same factor can be applied to Qmin in Table 3 reducing it from 50 to 
20, which is in reasonable agreement with the other two values. Although the data 
can be fitted by any pair of values of y and Q in Fig. 8, we shall show below that the 

Fig. 8. Results for log y plotted against log Q: Series 1, - u -. -; Series II, -; Series 111. - - - -. The 
remaining dotted line (. . . . .) shows Series I plotted with (log Q - 0.41) to allow for the smaller radius. 
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most plausible values are the smallest: 

y = 10 (33) 

Q- 10 (34) 

The removal by the capillary qutem 
From Eqns. 32 and 33 and the value of D,/.J’* in Table 1 we find that k, the 

first-order rate constant for the removal of methyl nicotinate for the dermis by the 
capillary system, is 

k = 5 x lo-” s- ’ (35) 

This value is in good agreement with results from a totally different type of 
chperiment, in which radioactive phosphate was injected intracutaneously (Helde 
and Seeberg, 1953). The average value of k for 10 subjects was k = 10V3 s-r. Hence 
we can conclude that the lifetime of the ester in the dermis is 3-10 mm. The 
agreement between the values of k is why we take y to be as low as possible. Higher 
values of y would lead to implausibly larger values of k. 

We can now estimate that the (1 + 4~7:) term in Eqn. 16 and 17 is only about 
1 .lO. For the penetration of the epidermis the removal by the capillary system is 
relatively unimportant since it only removes the ester that has actually reached the 
dermis. Hence the k-term is in the pre-exponential part of the expression_ On the 
other hand, for the radial diffusion in the dermis there is continuous removal of the 
diffusing ester and so K (or y) appears in the exponential term in Eqn. 24. 

The size of the radial diffusion coefficient 
From Eqns. 31 and 34, and with the value of D,/l’ from Table 1 and r,, = 0.5 cm 

we obtain 

DIJ =5X]()-Jcm2.s-’ (36) 

This value is almost a thousand times larger than the expected value for a dermal 
diffusion coefficient. Since no fit to the data can be obtained with a significantly 
lower value of Q, we conclude that the process which transports the ester in a radial 
direction is much more efficient than ordinary diffusion. This conclusion in fact does 
not depend on the detailed mathematical analysis. For D, - 1Qe6 cm* - s- ’ and a 
radial distance of 1 cm the characteristic time would be IO5 s or 10 days as opposed 
to times of the order of 10 min. 

The capillarr d$ksion model 
The more efficient radial transport process must involve the capillaries and we 

now present a model in which the ester partitions into the capillaries, is then carried 
radially outwards and then re-enters the dermis. The model is illustrated in Fig. 9 
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Fig. 9. Capillary diffusion model. Fig. 9A shows the ith capillary loop. Fig. 9B shows a thin slice through 

the dermis with randomly oriented capillaries. 

where we have only considered diffusion in the dermis in 
basic differential equation for transport in the capillary is 

one dimension, z. The 

(37) 

where cf is the concentration inside the capillary; c is the concentration in the 
adjoining dermis; vC is the velocity of flow of the blood in the capillary: x, describes 
the distance along the capillary from when it entered the dermis: k, describes the 
rate of transfer between the dermis and the capillary; and we have assumed a 
partition coefficient between the dermis and the blood of unity. The first-order rate 
constant k, can be related to a heterogeneous interfacial transfer rate constant k’ by 
considering the capillary diagram in Fig. 9. 

nr,_!k,cj = 2nr,k’c’ 

or k, = Zk’/r, (38) 

where rC is the radius of the capillary. 
Next we define the characteristic distance, x,, for the establishment of equi- 

librium in the capillaries 

x, = v,/k, 

and we write 

9, = x,/x, 

Eqn. 37 then becomes: 

W 1 ac’ ---I++~_-.~--I,c 
8% k, at (39) 
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The approximation is justified because as we shall show below k,t B 1; it is 
equivalent to the steady-state approximation often used in chemical kinetics. With 
the approximation we can integrate Eqn. 39 to obtain 

C: = exp( -~i)~*‘~ - exp( +I)d+i (40) 

where we have used the boundary condition that cl equals zero when the capillary 
enters the dermis (9i = 0). 

For a thin slice of dermis of width 6z and cross-sectional area A’ (Fig. 9) 

i = n 

6z A’(&/&) = - c Zar,Szk’(c - ci) (41) 
i-l 

where n = A’n’, and n’ is the number of capillaries per unit area. We now define (Y 
the ratio of the area of capillaries to that of the dermis 

(Y = n’7rrz (42) 

Then substitution from Eqns. 38, 40 and 42 into Eqn. 41 gives 

l-k “k”&_c;) at=- n i=, 

= -!Gy 
[ 

e-O’c_ 1 (__I 

1-l j=l 

)‘( i -2 e-~~,x:(corei)~~ ‘I 
where the second sum is obtained by rspeated integration by parts. 

i = n 

NOW C (cose,lj = J2"(c0sei)jdei,h 
i-l 0 

= 0 ifj isodd 

r(j/2+5) . . . 
= rci/2 + l)r’(t) lfJ ‘Seve” 

(43) 

(44 

For a network of randomly oriented capillaries we have replaced the summation 
with integration. The terms with odd values of j in Eqn. 44 vanish. For instance, if 
there was a linear concentration gradient, the random capillaries achieve no net 
transport because there is cancellation between material arriving from the richer 
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regions and material being lost to the poorer regions. Turning to the terms with even 
values of j each successive term is multiplied by xz. If z were to be replaced by Q 
then the multiplier would be (x,/to)‘. Furthermore, the coefficient from the cos 
function in Eqn. 44 decreases as j increases. So providing x, c rO, we take just the 
first term in the series. 

Then, as shown in Appendix 2, 

i=n 

C exp( -+i) = (n x./P)[l - exp(-J’/x;)l 
i=l 

and substitution into Eqn. 43 gives 

dC 

at= -kc + D,,~~*c/~z* 

where 

and 

Dr,=:mvCx.[l -${l -exp[--:)}I 

(45) 

(46) 

(47) 

(48) 

Hence the capillary diffusion model yields a kinetic diffusion equation of the same 
form as Eqn. 6 where k and D, are related to the geometry, kinetics and flow rate of 
the capillary system. The ratio of distances xC/P plays an important part. If x, is 
smaller than P’ then for most of its length in the dermis the capillary blood is 
equilibrated with the material in the dermis. If, on the other hand, x, is greater than 
1” then equilibrium is not achieved. In Table 4 we give approximate expressions for 
k and D,. 

Taking each case in turn, for x, > P’, k is simply given by the rate at which 
material is transferred from the dermis across the capillary wall. On the other hand, 
when I’ > x, for constant (Y the rate constant decreases with 8’. This is because the 
larger I’ can only be achieved by having fewer capillaries. Since each capillary is 

TABLE 4 

APPROXIMATIONS FOR k AND D, FROM EQNS. 47 AND 48 
- 

k 

D, 

I’< x, P’ > x, 
Non equdibrated Equilibrated 
av, /xc = ak, av,.&’ 
:avJ iav,x, = javc2/k, 
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equilibrated, it is more efficient to have a larger number of shorter capillaries. When 
x, ) 1’, “diffusion” requires as large a value of 1’ as possible in order to allow 
exchange. On the other hand when x, < 1’ then Do depends on x,. This is because 
the capillary blood arriving at any point contains information about the dermal 
concentration at a distance of the order of x, away. The larger this distance the more 
efficient is the mixing process. Hence we find that the smaller the interfacial rate 
constant the larger is the “diffusion” coefficient. Returning to Eqns. 47 and 48 we 
can combine them in the following two ways: 

y - (avJ2 
-*=+>[I-exp(-$)][l-?{l-exp(-$)}I 

and 

D, 1 
Y’=kx,8’=y 

1 -2 
( I’ 

I 1 

;p 
1 - exp -x 

C 

Plots of y and y’ as functions of -@‘/xc are shown in Fig. 10. It can be seen that y 
passes through a maximum when x, and J’ are of comparable size, while y’ only 
varies between 4 and 4. 

Results for capillary parameters 
From the maximum of 0.125 in Fig. 10 and the results in Eqns. 35 and 36 wz find 

that 

‘yvC > 2(2kD,)“” =4.5 K 10-‘cm.s- 

015 
t 

oooL- 1 , A-- 

-1.0 00 1.0 
log(l’lx, 1 

Fig. 10. Plots of y and y’ according to Eqns. 49 and 50. 



Now (Champion et al., 1971) 01 is about 0.1 and vc has been found to be about 
10e2 cm - s-l. Using these values ovc is a little smaller than the value in Eqn. 51. 
Mowever, of all the subjects tested in our experiments so far, RHG has the fastest 
response time and so the value in Eqa. 51 is entirely reasonable. However, it does 
suggest that y is close to its maximum value and this in turn means that 

x,=2 

Furthermore, these results provides further confirmation of the choices of low values 
of y and Q in Fig. 8. A choice of higher values would have led to a larger value in 
Eqn. 5 1. Using the plot of y’ in Fig. 10, we can now write 

x,; =: P’ = (0.3 kDi,)rJ2 = 0.6 cm (53) 

Considering that the dermis is about 0.2-0.3 cm thick (Katz and Poulsen, 1971). a 
value of 8’ which is 2-3 times the thickness of the dermis seems to us to be entirely 
plausible and to provide further confirmation of our model and analysis. 

‘We can now calculate results for k, and for the interfacial transfer rate constant 
k. 6. 

k, -= v,.x, = lo- ’ s- ’ 

k’ == Jr,k, = 2 x 10m4cme s-’ 

where we have used (Rothman, 1954) r< = 4 x 10’. ’ cm. The result for k, means that 
in the radial diffusion experiments where t > 100 s. k,t is > 10 and this justifies the 
approximation in Eqn. 39. The result for k’ is an order of lllagilitude less than the 
equivalent rate for the transfer of methyl nicotinate from water to isapropyl 
my&ate, (Albery et al., 1976). However, one would expect that the transfer through 
the capillary wall would be slower than that through a liquid-liquid interface. 

It is interesting that our analysis shows that x, is approximately equal to 1’. In 
Fig 1 I we plot the variation with Y/x, of k, the overall rate collstai~t for removal of 
material from the dermis, and k/n, the efficiency of a single capillary loop. The 

Fig. 1 I. Pfots against P/x, of k from Eqn. 47. and of k/n, the efficiency of e~rch lclop from Eqn. 55. 
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expression for k is the same as Eq,l. 47. The number of loops per unit volume is 
given by 

nc = n’/J’ (54) 

Substitution in Eqn. 47 gives for the efficiency 

For I’ much smaller than xc, k is constant but the efficiency of each capillary loop is 
small. This is because the blood returns before it has equilibrated. For I’ much 
larger than x, the blood equilibrates so the efficiency is constant but k falls as the 
number of capillary loops fall. Note that the limiting efficiency for a single loop is k, 
operating on the cylinder rllr:x,* which is also equal to arz v,. Hence the optimum 
arrangement, as found in this work is to have x, = J” giving a value of k close to the 
maximum with each channel close to its maximum efficiency. Under these condi- 
tions the blood in each capillary loop spends just enough time in the dermis for it to 
become equilibrated with its surroundings. 

Appendix 1 

This appendix describes the inversion, L- ’ g f in Eqn. 22 where f and g are given 
by Eqns. I1 and 23, respectively. To invert g we start with the two inrerse 
transforms (Roberts and Kaufman, 1966): 

L- ’ exp( -s’/‘) = exp( -0.25,‘~ )/2~‘/~7~/* 

and 

L-, exp - [e(s + tc)“2] 8 
= 

s+lc 
exp( -tcT) erfc - 

( i 271/2 

.2cexp( _,,_!c) 
a”*0 

where 0 = ( p - 1 )/Q’/‘, and in using the approximation for the complimentary 
error function (Abramowitz and Stegun, 1965a) we have assumed 0’ > 7. Next we 
use the convolution theorem for inverting g: 

(56) 

where y = xX +8-/4X + 0.25/( 7 - X) 



Inspection of y shows that when X tends to zero and when X tends to T y is very 
large. Hence for these values of X the integrand is very small and because of the 
exp( - y) term, for intermediate values of X it passes through a sharp maximum 
corresponding to the minimum value of y. The integral in Eqn. 56 is therefore 
mainly determined by the value of the integrand near this minimum value of y. 
Hence we can obtain a good appro~mation for g by expanding the integrand 
around its maximum value at the minimum value of y. We write 

where 

and 

CL!!2 AZ+ 1 ( i ax2 x=x,, 2x3m 2(7-U3 

(59) 

We can replace X with X, in the pre-exponential function in Eqn. 56 because the 
maximum in the integrand is so sharp. Hence 

c7z 
Q 

IL 

“‘expf-ACHE-X,)‘fd(X-X,,) (60) 

( f 2x, 1 1’2 exp( - Y,, ) 
nc 

‘0( 7 - X,JiZ 

The Gaussian integral is calculated bY replacing the integration limits with & oo. 
This is justified because for T GZ 1 

The physical reason why this appro~lnation works is iIlustrated in Fig. 1;. The 
exponential term in the convolution integral samples that part of the pre-exponential 
term which is mainly responsible for the erythema. At values of X less than X ,~ very 
little material has arrived at p. At values of X greater than X,, more material is 
arriving but will not have time to reach p before the erythema is triggered. In Eqn. 
57 for Ym the first two dermal terms describe the radial diffusion and the loss to the 
circulatory system. The third term describes the effect of the epidermal barrier. 
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0 h .--h--o T 

Fig. 12. Diagram to show how one has only to evaluate the integrand in Eqn. 56 near its maximum value. 
The monotonic curve represents the non-exponential part; the Gaussian samples this function near the 
minimum value of y. 

Considering the simple case where tc = 0, one can see from Eqn. 58 that if 8 is large. 
corresponding to slow dermal diffusion, then X, is close to T; the 8-term dominates 
the expression for y. On the other hand, if 0 is small corresponding to rapid dermal 
diffusion (or p close to unity) then X, is close to zero; the epidermal term dominates 

Y m’ 
Returning to Eqn. 22 whconvolute g with f using the same approach as used in 

Eqn. 15. Hence 

where 

Ylll = Khm + 8”/4x, + 0.25/( 72 -A,, - A) 

By definition 3y,,,/aX, = 0 and hence ym is smallest when X is smallest. As with 
Eqn. 56 we approximate the integrand ‘or X close to zero writing 

Y m = Y”,.T2 +X/4(7, -X,)‘... 

and we obtain 

2 

1 

2&l 1 l/2 1 
l/2 evt -Y,.,,) erf ” v"=B ?rCp(y-Xm) 2k - U 



In this equation C, X, and y, are described by Eqns. 57-59. Defining the new 
variables. 

y = 2~” and 5’ = 1 + 4~( 5 - A,)’ 

we obtain finally the result in Eqn. 24. 

Appendix 2 

In this appendix we work out the sum CiZy exp( -+i) to obtain the result in Eqrr.. 
45. There are n capillaries randomly distributed with respect to the distance xi after 
they reached the surface between the value of xi = 0 (just reached the surface) and 
x , = 4’ (just about to leave the surface). Thus the element for each capillary is R’/n 
or in terms of pi, 64 =J?‘/nx,. Hence we may write 

i=n 

60 C exp( -(pi) =~“‘x’exp(-+JdOi 
i= I 0 

giving 

i=ll 

C exp(-Gi)=F 
i=l 

[I-exP(g) 
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