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Summary

Results are presented for the percutaneous absorption of 3 different esters of
nicotinic acid from circular patches; the values of the diffusion coefficients and
triggering concentrations for visible erythema are in good agreement with previous
work. For methyl nicotinate the radial spread of the erythema has been followed as a
function of time; the results are shown to fit a radial diffusion equation. However,
the value of the diffusion coefficient is found to be a thousand times larger than the
expected value for molecular diffusion. A model is presented in which the radial
transport is caused by uptake in the capillaries. Reasonable values are found for the
rate constants describing uptake and for the geometry of the capillaries. This
geometry is shown to be close to the optimum for efficient transport to and from the
dermis.

Introduction

In this paper we report the results of experiments in which we have studied the
percutaneous absorption of 3 different esters of nicotinic acid. These compounds
produce a noticeable erythema after penetrating the epidermis. We have studied the
radial spread of the erythema produced by methyl nicotinate. From analysis of the
rate of spread we can measure the rate of radial diffusion and of uptake by the
capitlary system,
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Materials and Methods

Experimental details have been given previously (Albery and Hadgraft, 1979b).

The radial spread was measured at suitable time intervals by outlining the erythe-

matous area on the subject’s arm with a felt-tip pen. At the end of the experiment,
whei about 6 “contours” had been recorded, the arm was photographed in a fixed
position with respect to the camera. The area on the photograph was measured by
tracing each contour on to graph paper and counting the squares. The conversion of
the photographic area to the area on the original skin was achieved by photograph-
ing graph paper in position on the arm.

Theory

Previous work (Albery and Hadgraft, 1979b) has shown that there is no signifi-
cant barrier to transfer through the epidermis from kinetic barriers at phase
boundaries. This simplifies the theoretical treatment of the transport through the
epidermis. On the other hand, we now have to include the transport in the dermis.
The model we use is illustrated in Fig. 1. Transport through the epidermis is
described by Fick’s second law

8)

where ¢ is the concentration of the diffusion species and Dy is the diffusion
coefficient in the epidermis. This equation holds for the area under the patch
{r < 1,). The boundary conditions for Eqn. 1 are as follows. Firstly, on the surface of
the skin, while the patch is applied, we have:

atz=0 and0<t<t,, c=¢;=Kc, (2)

where K is the partition coefficient between the patch and the epidermis and ¢ is
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Fig. 1. Model and notation for transport from a circular patch through the epidermis and with radial
transport in the dermis.
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the concentration of ester in the patch. This boundary condition takes no account of
depletion in the external phase. This can be important when vehicles of high
viscosity are used (Albery and Hadgraft, 1979b) but can be ignored in the present
work when only aqueous solutions are employed. Secondly, after the patch is
removed we have

atz=0 andt>t,, (9c/0z)y=0

Thirdly, ai the insi..e edge of the epidermis we have:
atz=4 c=0.

This boundary condition assumes that removal by transport in the dermis and the
circulatory system is rapid compared to transport across the epidermis. This assump-
tion is justified by experiment (Katz and Poulsen, 1971) and is also confirmed by
analysis of our results (see below).

Fourthly, at the start of the experiment we have for all values of z:
att=0, c=0.
We express Eqn. 1 in dimensionless variables:

du 93u

o ¥

where u =c/c,, T =tDg /£, and x =z/£.
The boundary conditions become:

at =0 u=790

at x=1 u=20

at x=0

fort,>7>0 u=1 (4)
and forr> 1, (du/dx),=0 (5)

In the dermis we assume that the distance, w, between the epidermis and the
circulatory system is small enough for the concentration to be uniform. The
processes occurring are therefore the supply of material from the patch the diffusive
transport in the radial direction and the removal by the circulatory system. The
differential equation is therefore:

3% 1 dc
= —_—— ——— - 6
DD(6r2+T al_)+G ke (6)

de
ot

where Dy, is the diffusion coefficient in the dermis, k is a first-order rate constant
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describing removal by the circulatory system, and G describes the supply of material
from the patch of radius r,.

Forr<r,,
G*aDE(——é—E) _aDEcD(_._QE)
ow 3/, wil X /;

and forr>r1,,G=0

The parameter a describes the fractional area of the interstitial channels through

which the ester diffuses compared to the total area of the dermis (Albery and
Hadgraft, 1979b).

Expressing Eqn. 6 in dimensionless variables we obtain:

v (82v+1 v (au) y )
P TR T AT K
a7 3> p Op IX /i

where

i

v

wu/fa=wc/fc,a

Q= I)I)IE/DP.']? (8)
p=r/r, (9)
k =k /D, (10)

The boundary conditions are:

at 1=10 v=4_
at p=0 av/dp =0
45 p— e v—0,

The problem in solving Eqn. 3 with boundary conditions (4) and (5) is the change in
boundary condition when the patch is removed at t = t,. In our previous treatment
(Albery and Hadgraft, 1979a) we used a double Laplace transform to solve the
equation. In this work we proceed by first solving Eqn. 3 for t <t, with the
appropriate boundary condition (4). We then f{ind an equivalent boundary condition
to Egn. 5 in (du/dx ), rather than in u,. With the use of the step function we can
express the boundary condition at x = 0 in terms of (du/dx ), for all values of t and
this means that we do not have to use the double Laplace transform technique.

Hence solving Eqn. 3 with boundary condition (4) we obtain the Laplace
transform:

(04/0% )o= —s " coth(s"?) = -5 !*
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The approximation is justified since 7, << 1 (Albery and Hadgraft, 1979b). We then
invert the transform to obtain the combined boundary condition:

(Qu/dx)o=—f= —(n1) " *[1 = U(r - 1)] (11)
where the step function,
U(r—7)=0 forr<r,

=1 forr>n

Now solving Eqn. 3 with boundary condition (11) we obtain for the supply of
material to the dermis:

(3T/09x ) x=1 = —f-sech(s'?) (12)

For experiments where the patch is removed and the time, t,, for erythema to
appear under the patch is measured we can ignore the Q terms in Eqn. 7. Hence the
accumulation of the drug under the patch to reach the triggering level is given by

v = —E[(au/ax)x:. — xv]ds (13)

where v =ng/fKc a and ny (=cgw) is the number of moles per unit area
required to trigger the erythema.
From Eqgns. 12 and 13

w (1= N exp[ —0.25(r, - \) ']
N2 [1 4 dx(= -]

ve=L7) F sech(s'/l)/(sﬂ):%j; dn (15)

We have used the convolution integral to invert the transform. However, because of
the step function, U, in the expression for {f in Eqn. 11 we replace the upper
integration limit 7, with 7,; for 1 > 7, the integrand is zero. We have also used the
following approximation, which holds for 7% < 1,

osech(s'?) __ 2exp(=s'?) _ 47" exp(—ir)

L stk S+ - w'/2(1 + 4x1?)

Consideration of the integrand in Eqn. 15 shows that for T < 1 the exponential term
is always small but that it has its maximum value when N\ — 0. For larger values of A
the exponential term reduces the size of the integrand so much that its contribution
to the integral is negligible. Hence writing

— ————— T o wo—— .
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we obtain

dA

_ 41)/% exp(—0.25/7,) fﬁ exp(—N/413)
e 'rr(l +4K'722) 0 %N

8732 exp( —0.25/7,) erf(7}/2/27,)
- 'rr]/:(l + 4K1'22)

(16)

If we take 7, = 7,. which corresponds to not removing the patch, then, since 7 < 1,
the erf term is unity. With k =0, Eqn. 16 then reduces to our previous result
(solution IA, of Table 1, Albery and Hadgraft, 1979a) for this case:

vp =87 2572 exp(—0.25/7,)

On the other hand if we take 1 > 77 > 7/ then

<172 - / 1/2
v = 45"% exp(—0.25,/7,) 7| (17)
) 'rr(l + 4|c1'22)

This equation (with k=0) is then the same result as we obtained previously
(solutions P3 and PI of Table 3, Albery and Hadgraft 1979a). The advantage of the
new treatment is that we do not have to make aay assumptions about the relative
size of 7, and 7,. In this work we have also taken into account the removal of the
ester by the circulatory system (the term in k7). By contrast our previous work
contained two effects not considered here—the kinetics of interfacial barriers and
the depletion of the external phase.

Next we turn to the radial diffusion. We take the Laplace transform of Eqn. 7
and write

(s +x)v, = Q(3°V, /30" + p '37,/3p) (18)
where forp < 1,(r<ry), n=1

(aﬁ/aX)i s
S+ K

and v =

while forp> 1. (r>r,),n=2

and v =¥V,

The solutions to Eqn. 18 are modified Bessel functions of order zero (Abramowitz

and Stegun, 1965b). They are shown in Fig. 2. In order to fulfill the boundary
condilions

v, = Al (qp)
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Fig. 2. Plot of the Bessel functions i, (p) and K (p) together with a typical plot of Egqns. 19 and 20 with
q = 2 plotted with y as defined in Eqn. 21.

while ¥, =BK, (qp)

where q=(s+x/Q)"*
and A and B are constants.

The constants are found by matching the values of v, and (9v,/dp) at p = 1. Hence
we obtain for

p<l, V= (= a“/a")‘[l alo(qe)K,(q)] (19)
whule for
__9qLi(q)Ke(ge) [ Bu

Fig. 2 also shows a typical plot for q = 2 of the radial variation of ¥ plotted as y
where

(s+ )V

— _ASTK)V 21)
(—aﬁ/ax)n
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For \ > 2 (Abramowitz and Stegun, 1965b)
Mo(NK (N =NL(NK (M) =3

Thus the concentration on the edge of the patch is one-half that at the centre,
because material is being lost from the edge by radial diffusion. This factor of 1 /2 is
a difference between these experiments, where the patch is removed and the time for
erythema to develop is measured for the place where the patch was, and those
experiments, where the patch remains in place and the time is measured for a halo of
erythema to develop around the patch. In the latter case v is given by Eqn. 16 with
the factor of 8 replaced by 4.

At greater radial distances, assuming 72 < 1, which leads to s2> 1 and ¢° > 1,
we can replace the Bessel functions by their asymptotic forms for large argument
(Abramowitz and Stegun, 1965b) and so obtain (for p > 1)

G =p 2L g1 (22)

A Vo -1 1/2
whereg - P8 (?SEH))(HK) /Q] o)

As described in Appendix 1, the transform is inverted by first inverting § and
then using the convolution theorem. We obtain.

4 F(¢, 0
)1/2' ,({g,l/z) -exp[ —yH({. 8)] erf[

v v =

Tll/zH(e//g)] (24)

(7p, 27

where

(2-1""

F($.8)=
¢ +e)

1+6(28° - 1) /¢

H(§. §) = ——
451 -1)7"

=7 -1+ 00)

v=2¢'-

(25)
andb=(p, —1)/Q"" atp=1,0=0

and Eqn. 24 reduces to Eqn. 16 apart from the factor of 2 which describes the radial
diffusion at the edge of the patch.
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Results and Discussion

Continuous application

Experiments in which the ester was applied continuously were carried out for
methyl, n-butyl and hexyl nicotinate. For these experiments the k-term is negligible
(see below) and hence we can use the simple Eqn. 16 with the factor of 4 rather than

§ to allow for radial depletion at the edge of the patch. Substituting for 7, =7, and
for v from Eqn. 14 we find

4K D 372 ,fl
1 3,2y (EE) - J=£
Og(thz lOg al log frrl/z «32 + 4 % 2.303 DEtz (26)

where we have neglected the term in 1 + 4k; this approximation is justified below.

The results of the experiments are plotted in Fig. 3 and are collected together in
Table 1. Each of the points in Fig. 3 is the mean of at least 12 separate experiments.
In calculating ng/af we have estimated K from the measured values for the
partition of the esters between water and isopropyl myritate K., corrected by a
factor of 6 (Albery and Hadgraft, 1979b):

K = 6K pm (27)

We assume that these esters diffuse by the intercellular rather than the transcellular
route (Albery and Hadgraft, 1979b). That is the ester diffuses in the channels round
the keratinized cells rather than through the cells. For this route we estimate (Albery
and Hadgraft, 1979b) that

£/mm = 0.34, (28)
and that the fractional area occupied by the channels, a, is given by
a=7x10"" (29)

The results in Table 1 show that despite a 50-fold change in K the 3 esters give
similar triggering concentrations. Furthermore, the diffusion coefficient of each ester
in the interstitial channels parallels that for each ester in IPM; the epidermal
diffusion coefficients are slower by a factor of 25.

Our previous results (Albery and Hadgraft, 1979b) for methyl nicotinate gave
D.=37 m?>-Ts" ', and ng =40 pmol-cm™ 2 Considering that these results were
obtained with JH they are in good agreement with those in Table 1. Our results also
agree with those of Stoughton et al. (1960) who found, using direct injection, that
ng ~ 10 pmol - cm ™2 and that n was insensitive to the different alkyl groups.

Pulse experiments
Experiments in which the patch is applied for a time t, and erythema subse-
quently appears in the place where the patch was at time t, were carried out for
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Fig. 3. Plots of Eqn. 26 for experiments with continuous application of nicotinate esters: O, methyl; X,

n-butyl; O, hexyl.

methyl nicotinate with ¢ = 93.8 mM. The results are reported in Table 2: each
result for t, is the mean of 12 separate experiments. Using the value of D/1°
determined from the continuous application experiments in Table 1 we calculate v,

TABLE 1

RESULTS FOR CONTINUOUS APPLICATION EXPERIMENTS

Ester Methyl n-butyl hexyl
(D, /£%)/ks™ 2 0.190 0.142 0.122
K* 20 230 430

n, /al/pM ¢ 36 R0 KR}

Dy /m? Ts™1d 22 17 14
Dipay/m* Gs™! 0.51 0.43 0.40
102D /Dypp 43 38 29
ng/pmolecm 24 9 19 R

* Calculated from gradients of plots in Fig. 3.
® From Eqn. 27.

* Calculated from intercepts of plots in Fig. 3.
4 Calculated using values in Eqn. 28 and 29.
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TABLE 2
RESULTS FOR PULSED EXPERIMENTS FOR METHYL NICOTINATE

t,/s 15/ 103 vg
20 244116 145
30 212+ 16 6.3
60 215+ 14 94
120 209+ 10 6.4
180 218+ 7 9.1
mean------ 2115

from Eqn. 16. Reasonably constant values are found. From Eqn. 14 we find

ng = 41 pmol - cm ™2 (30)
This value is in reasonable agreement with that in Table 1. These results therefore

confirm Eqn. 16 and the theoretical description of diffusion in the patch area.
Radial diffusion experiments

The area, A, of the erythematous region is measured as described in the experi-
mental section. The area is assumed to be circular with an average radius, rg. The
dimensionless parameter, pg, can then be calculated:

where 1, is the radius of the patch. In Table 3 and Figs. 4, 5 and 6 we report the
experimental results.

In Eqn. 24 we can use the values of v; and Dg/1° from the experiments with
continuous application. There are then only the two unknowns which describe radial
diffusion and removal by the circulatory system, respectively:

Q=D /Dgrd (31)
efo
Y mzﬂl!.’mzkl/ilbél/.’. (32)

Taking values of Q, the corresponding value of y can be calculated for each
experimental point. A successful {it of the experimental data to Eqn. 24 is indicated
by a constant value of y for the different experimental points in a series; typical
results are shown in Fig. 7.

For values of Q less than those given in Table 3 (Q,,;,). no fit can be found to
Eqn. 24 for many of the experimental points and the remaining values of y are more
dispersed. For values of Q greater than Q,,;, reasonable fits (as shown in Fig. 7) can
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Fig. 4. Results for radial spread of erythema from methyl nicotinate for different values of t; — Seres 1.

be found; there is no significant variation in the standard deviation for y for
different values of Q. In Fig. 8 we show the values of log y plotted against log Q. Q
varies with the size of the patch and in Fig. 8 we have also plotted the data for the
experiments of Series I shifted by 0.41 log units, which corresponds to the radius

TABLE 3
RESULTS FOR RADIAL DIFFUSION EXPERIMENTS

Series Fig. Cp /MM Ty //em Qun
I 4 290 0.313 30
I 5 93.8 0.500 10

11 6 1020 0.500 10
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Fig. 5. Results for radial spread of erythema from methyl nicotinate for different values of t; — Series 11
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Fig. 7. Typical analysis of the Series I results using, in this case, Q = 50 and Eqn. 24. The values of t, /s
are as follows: @, 30; O, 60; x 300; O, 600; v, 1200. The value of log v is 1.24+0.05.

ratio squared (0.50,/0.31)2. It is satisfactory that when this is done the values of log y
as a function of log Q from Series I are in good agreement with those from Series 11
and III. The same factor can be applied to Q,,,, in Table 3 reducing it from 50 to
20, which is in reasonable agreement with the other two values. Although the data
can be fitted by any pair of values of y and Q in Fig. 8, we shall show below that the

20

log
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10 20 30 6.0
logQ

Fig. 8. Results for log y plotted against log Q: Series I, -« - ; Series 11, ; Series 11}, - - - -. The
remaining dotted line (- - - - ) shows Series 1 plotted with (log Q—0.41) to allow for the smaller radius.
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most plausible values are the smallest:

y=10 (33)
Q=10 (34)

The removal by the capillary system
From Eqns. 32 and 33 and the value of D/£? in Table 1 we find that k, the

first-order rate constant for the removal of methyl nicotinate for the dermis by the
capillary system, is

k=5x10"3s""! (35)

This value is in good agreement with results from a totally different type of
caperiment, in which radioactive phosphate was injected intracutaneously (Helde
and Seeberg, 1953). The average value of k for 10 subjects was k = 10* s~!. Hence
we can conclude that the lifetime of the ester in the dermis is 3-10 min. The
agreement between the values of k is why we take y to be as low as possible. Higher
values of y would lead to implausibly larger values of k.

We can now estimate that the (1 + 4x’) term in Eqn. 16 and 17 is only about
1.10. For the penetration of the epidermis the removal by the capillary system is
relatively unimportant since it only removes the ester that has actually reached the
dermis. Hence the k-term is in the pre-exponential part of the expression. On the
other hand, for the radial diffusion in the dermis there is continuous removal of the
diffusing ester and so k (or y) appears in the exponential term in Eqn. 24.

The size of the radial diffusion coefficient
From Eqns. 31 and 34, and with the value of Dg/1° from Table 1 and ry = 0.5 cm
we obtain

This value is almost a thousand times larger than the expected value for a dermal
diffusion coefficient. Since no fit to the data can be obtained with a significantly
lower value of Q, we conclude that the process which transports the ester in a radial
direction is much more efficient than ordinary diffusion. This conclusion in fact does
not depend on the detailed mathematical analysis. For D~ 107¢ cm?-s™! and a
radial distance of 1 ¢m the characteristic time would be 10° s or 10 days as opposed
to times of the order of 10 min.

The capillary diffusion model

The more efficient radial transport process must involve the capillaries and we
now present a model in which the ester partitions into the capiilaries, is then carried
radially outwards and then re-enters the dermis. The model is illustrated in Fig. 9
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Fig. 9. Capillary diffusion model. Fig. 9A shows the i'" capillary loop. Fig. 9B shows a thin slice through
the dermis with randomly oriented capillaries.

where we have only considered diffusion in the dermis in one dimension, z. The
basic differential equation for transport in the capillary is

—éT:kc(c_ci ™ (37)

where ¢ is the concentration inside the capillary; ¢ is the concentration in the
adjoining dermis; v, is the velocity of flow of the blood in the capillary; x, describes
the distance along the capillary from when it entered the dermis; k. describes the
rate of transfer between the dermis and the capillary; and we have assumed a
partition coefficient between the dermis and the blood of unity. The first-order rate
constant k. can be related to a heterogeneous interfacial transfer rate constant k’ by
considering the capillary diagram in Fig. 5.

2 o N
wr k¢ =2nr k'c!

or k. =2k'/r, (38)

where r_ is the radius of the capillary.

Next we define the characteristic distance, x_, for the establishment of equi-
librium in the capillaries

X, = v/k,

and we write

¢, =X,/X,

Eqn. 37 then becomes:

de; 1 dc
'é—‘;l'+ci—c-k "‘a°t‘——(. (39)
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The approximation is justified because as we shall show below k t>I; it is
equivalent to the steady-state approximation often used in chemical kinetics. With
the approximation we can integrate Eqn. 39 to obtain

¢, = exp(—&;) fo *c - exp(9})d ¢! (40)

where we have used the boundary condition that ¢] equals zero when the capillary
enters the dermis (¢; = 0).

For a thin slice of dermis of width 3z and cross-sectional area A’ (Fig. 9)

8z A’'(3c/0t) = — I‘E 2ar dzk’(c —c}) (41)

i=1

where n = A'n’, and n’ is the number of capillaries per unit area. We now define «
the ratio of the area of capillaries to that of the dermis

a=n'nr] (42)

Then substitution from Eqns. 38, 40 and 42 into Eqn. 41 gives

aC (!kc i=n ,

9t n E:I(C‘“Ci)
__ ok, iinc _ e*¢'f¢'ce¢;d¢'
- n o 0 i

- ok, iin e ®ec— Y (- l)j(i = e“"‘)ﬂ(cosﬂi)j'g‘;% (43)

noo j=1

where the second sum is obtained by repeated integration by parts.

Now Y (cos8, ) =f2“(cos()i)jd9i/2~n
0

i=1

=0 ifjisodd

__IG2+3)
rG/2+nre)

For a network of randomly oriented capillaries we have replaced the summation
with integration. The terms with odd values of j in Eqn. 44 vanish. For instance, if
there was a linear concentration gradient, the random capillaries achieve no net
transport because there is cancellation between material arriving from the richer

if j is even (44)
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regions and material being lost to the poorer regions. Turning to the terms with even
values of j each successive term is multiplied by x2. If z were to be replaced by p
then the multiplier would be (x./ry)?. Furthermore, the coefficient from the cos
function in Eqn. 44 decreases as j increases. So providing x_ < r,, we take just the
first term in the series.

Then, as shown in Appendix 2,

Y exp(— ;) = (n xo/2)[1 — exp(—£'/x.)] (45)

and substitution into Eqn. 43 gives

%% = ket D3’ (46)
where
av, £
k=7{1—exp(—x_cﬂ ”
and
I Xe £
D;)=§“VCXcll—F{I_exP(—Z)}} -

Hence the capillary diffusion model yields a kinetic diffusion equation of the same
form as Eqn. 6 where k and D, are related to the geometry, kinetics and flow rate of
the capillary system. The ratio of distances x_/#’ plays an important part. If x_ is
smaller than £’ then for most of its length in the dermis the capillary blood is
equilibrated with the material in the dermis. If, on the other hand, x_ is greater than
£’ then equilibrium is not achieved. In Table 4 we give approximate expressions for
k and Dy,

Taking each case in turn, for x_ >, k is simply given by the rate at which
material is transferred from the dermis across the capillary wall. On the other hand,
when £’ > x . for constant « the rate constant decreases with £’. This is because the
larger £’ can only be achieved by having fewer capillaries. Since each capillary is

TABLE 4
APPROXIMATIONS FOR k AND D, FROM EQNS. 47 AND 48

£ <x, L= x,
Non equilibrated Equilibrated
k av, /X, = ok, av, /£’

t ’ 1 b 20
DD 4°‘vcl 2uvcxc'_2°‘\'c/kc
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equilibrated, it is more efficient to have a larger number of shorter capillaries. When
Xx. >V, “diffusion” requires as large a value of I’ as possible in order to allow
exchange. On the other hand when x, <1’ then D, depends on x_. This is because
the capillary blood arriving at any point contains information about the dermal
concentration at a distance of the order of x_ away. The larger this distance the more
efficient is the mixing process. Hence we find that the smaller the interfacial rate
constant the larger is the “diffusion” coefficient. Returning to Eqns. 47 and 48 we
can combine them in the following two ways:

_KDp _Ixely ol E M X o - £
v= (v v =37 [1 exp( X )][1 7 {1 exp( X )}] (49)
and
= Po _1 ! _Xe _
Y Skl 2 / l,) 7 (50)
l—epr———

Plots of y and y’ as functions of £’/x_ are shown in Fig. 10. It can be seen that y
passes through a maximum when x_ and £’ are of comparable size, while y’ only
varies between 1 and 1.

Results for capillary parameters
From the maximum of 0.125 in Fig. 10 and the results in Eqns. 35 and 36 wz find
that

av,>2(2kD;y)"? =45 x 102 cm -5 (51)

015

o104

1 J

716 20 10
log(i'/xc )

Fig. 10. Plots of y and ¥’ according to Eqns. 49 and 50.
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Now (Champion et al., 1971) « is about 0.1 and v, has been found to be about
1072 cm-s~'. Using these values av, is a little smaller than the value in Egn. 51.
However, of all the subjects tested in our experiments so far, RHG has the fastest
response time and so the value in Eqn. 51 is entirely reasonable. However, it does
suggest that y is close to its maximum value and this in turn means that

x, =4 (52)

Furthermore, these results provides further confirmation of the choices of low values
of v and Q in Fig. 8. A choice of higher values would have led to a larger value in
Eqn. 51. Using the plot of y’ in Fig. 10, we can now write

x,=4"=(03kDy)"*=0.6cm (53)

Considering that the dermis is about 0.2-0.3 cm thick (Katz and Poulsen, 1971), a
value of £ which is 2-3 times the thickness of the dermis seems to us to be entirely
plausible and to provide further confirmation of our model and analysis.

We can now calculate results for k. and for the interfacial transfer rate constant
k"

k.=v/x.,=10""s"!
k=irk =2%10"*cm-s"'

where we have used (Rothman, 1954) r. = 4 X 10" * cm. The result for k_ means that
in the radial diffusion experiments where t > 100 s. k_t is > 10 and this justifies the
approximation in Eqn. 39. The result for k’ is an order of magnitude less than the
equivalent rate for the transfer of methyl nicotinate from water to isopropyl
myristate, (Albery et al., 1976). However, one would expect that the transfer through
the capillary wall would be slower than that through a liquid-liquid interface.

It is interesting that our analysis shows that x_ is approximately equal to £’. In
Fig. 11 we plot the variation with £’ /x of k, the overall rate constant for removal of
material from the dermis, and k/n_ the efficiency of a single capillary loop. The

ool tind 0
T
tog X
R [ din
SUhe
, loglm}x(k:}
K1 / »

15 00 10
tog{l'/x, )

Fig. 11. Plots against #'/x_ of k from Eqn. 47, and of k /n, the efficiency of each loop from Eqn. 55.
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expression for k is the same as Eqa. 47. The number of loops per unit volume is
given by

n.=n'/l (54)

Substitution in Eqn. 47 gives for the efficiency

(k/n )

'ﬂ‘l'X

=1- exp( - {-) (55)

c

For £’ much smaller than x_, k is constant but the efficiency of each capillary loop is
small. This is because the blood returns before it has equilibrated. For £’ much
larger than x_ the blood equilibrates so the efficiency is constant but k falls as the
number of capillary loops fall. Note that the limiting efficiency for a single loop is k.
operating on the cylinder mr2x_ which is also equal to mr2v,. Hence the optimum
arrangement, as found in this work is to have x = £’ giving a value of k close to the
maximum with each channel close to its maximum efficiency. Under these condi-
tions the blood in each capillary loop spends just enough time in the dermis for it to
become equilibrated with its surroundings.

Appendix 1

This appendix describes the inversion, L' § f in Eqn. 22 where f and g are given
by Eqns. 11 and 23, respectively. To invert § we start with the two inverse
transforms (Roberts and Kaufman, 1966):

L' exp(—s'/?) = exp(—0.25/7)/2x!/ 2732

and

1,2
exp — |0(s +«) 0
- [s+n ] =exp(—m)erfc( Yz

27172 B __Qi
WVZBexp KT = 7=

where 8= (p—1)/Q'2, and in using the approximation for the complimentary
error function (Abramowitz and Stegun, 1965a) we have assumed 6° > 7. Next we
use the convolution theorem for inverting g:

=

1 N2
oo | — —————— - 56
8 fovﬂ (T__)\)J/zeXP( y)dN (56)

wherey = kN +8°/4\ +0.25/(t —\)
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Inspection of y shows that when N tends to zero and when N tends to v y is very
large. Hence for these values of N\ the integrand is very small and because of the
exp(—y) term, for intermediate values of N it passes through a sharp maximum
corresponding to the minimum value of y. The integral in Eqn. 56 is therefore
mainly determined by the value of the integrand near this minimum value of y.
Hence we can obtain a good approximation for g by expanding the integrand
around its maximum value at the minimum value of y. We write

y=yn +1C(N= N, )

where

Yo = KN+ 07/4N, +0.25/(1 = \,), (57)
N 2
h=Xm 47\m 4(7”7\m)

and
2 2

C=(§—y) = o + I (59)
N Ja-n, 2N, 2(r—n\,)

We can replace N\ with N\, in the pre-exponential function in Eqn. 56 because the
maximum in the integrand is so sharp. Hence

LI S exp(-yln)fT”}\"‘exp[“%C(k Nl AN =N (60)
T b e N

The Gaussian integral is calculated by replacing the integration limits with =+ co.
This is justified because for 7 << 1

CN, > TlandC(7 -, ) > 1

The physical reason why this approximation works is illustrated in Fig. 1z. The
exponential term in the convolution integral samples that part of the pre-exponential
term which is mainly responsible for the erythema. At values of \ less than N\, very
little material has arrived at p. At values of X\ greater than X\, more material is
arniving but will not have time to reach p before the erythema is triggered. In Eqn.
57 for y,, the first two dermal terms describe the radial diffusion and the loss to the
circulatory system. The third term describes the effect of the epidermal barrier.
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i

0 Ap ==X = T

Fig. 12. Diagram to show how one has only to evaluate the integrand in Eqn. 56 near its maximum value.
The monotonic curve represents the non-exponential part; the Gaussian samples this function near the
minimum value of y.

Considering the simple case where k = 0, one can see from Eqn. 58 that if § is large,
corresponding to slow dermal diffusion, then N\ | is close tc ; the 6-term dominates
the expression for y. On the other hand, if 8 is small corresponding to rapid dermal
diffusion (or p close to unity) then A | is close to zero; the epidermal term dominates
Yme .

Returning to Eqn. 22 we convolute § with f using the same approach as used in
Eqn. 15. Hence

1 f”* g(t,—\) dn

Vg =7
o2 Jo “()\)1/2

f’!(”\m)"z exp( — Y )

1
_;)T;E o \ nC .G('r:—)\m-)\)mw}\”z

where

Yoo = KNy + 02740, +0.25/(m =N = N)

By definition 9dy,,/d\,, =0 and hence y,, is smallest when X is smallest. As with
Eqn. 56 we approximate the integrand or N close to zero writing

Yo = Ymr, F N/A(1 — N ) e

and we obtain

LR 2 ]
= - erff ————
Ve H[ﬂCp('\'g—}\m)] exp( ym.-rz) 2('72—}\m)
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In this equation C, \, and y,, are described by Eqns. 57-59. Defining the new
variables,

y=2k"?andt’=1 +4|c('r2—}\m)2

we obtain finally the result in Eqn. 24.

Appendix 2

In this appendix we work out the sum X! =7 exp(—¢,;) to obtain the result in Eqr.
45. There are n capillaries randomly distributed with respect to the distance x; after
they reached the surface between the value of x; = 0 (just reached the surface) and
x, =4’ (just about to leave the surface). Thus the element for each capillary is £’/n
or in terms of ¢,;, 8¢ =.£’/nx_. Hence we may write

i=n

£/,
8¢ E exp( —¢;) z_/(; / exp(—¢,;)d,

=1

giving

i=n nx, VA
E:‘ exp(—o,) = ya [1 - exp( . )}
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